- 1. Given any n odd numbers a_1, a_2, \ldots, a_n , where n > 1 is an integer, the product $a_1 \cdot a_2 \cdot \ldots \cdot a_n$ is odd. (Use induction.)
- 2. Prove that the number $\sqrt{10}$ is irrational.
- 3. Prove that the number $\sqrt{12}$ is irrational.
- 4. Let R be a relation on \mathbb{Z} defined by aRb if and only if $a^2 + b^2$ is even. Then R is an equivalence relation and $\{0,1\}$ is a complete set of representatives.
- 5. Given any two nonempty sets A and B and any function $f: A \to B$, the relation R on A defined by xRy if and only if $f^{-1}(f(x)) = f^{-1}(f(y))$ is an equivalence relation on \mathbb{R} .
- 6. The function f defined by $f(x) = \sqrt{x^2 2}$ is neither injective nor surjective from the natural domain of f to the reals.
- 7. Let a and b be integers and let n be any positive integer greater than one.
 - a. Prove that if a is a prime number, then a|b if and only if $a|b^n$.
 - b. Provide an example where a is not prime and the if and only if fails to be true.
- 8. Let $f: X \to Y$ be a function and let $A, B \subseteq X$.
 - a. Prove that $f(A \cap B) \subseteq f(A) \cap f(B)$.
 - b. Provide an example where $f(A \cap B) \subset f(A) \cap f(B)$.
 - c. Prove that if f is also injective, then $f(A \cap B) = f(A) \cap f(B)$.
- 9. Prove (using any relevant results) that $\{n^2 \mid n \in \mathbb{N}\}$ is denumerable.
- 10. Prove (using any relevant results) that $\{x^2 \mid x \in \mathbb{R}\}$ is uncountable.
- 11. Prove that \mathbb{Q} is denumerable without referring to any uncountable sets.
- 12. Prove that (0,1) is uncountable without referring to any other uncountable sets.
- 13. Let R be the relation on \mathbb{R} defined by aRb if and only if $a b \in \mathbb{Z}$.
 - a. Prove that R is an equivalence relation.
 - b. Find a complete set of representatives of \mathbb{R}/R .
 - c. Describe $[\pi]$ using set notation, or graph $[\pi]$ as a subset of \mathbb{R} .
- 14. Let $R = \{(0, \{0\}), (1, \{1\})\}$ and $S = \{(\{0\}, 0), (\{1\}, 1), (\{0, 1\}, 0), (\{0, 1\}, 1)\}.$
 - a. Find $S^{-1}(0)$.
 - b. Find $S \circ R$.
 - c. Prove or disprove: $S \circ R$ is a partial order.
 - d. Prove or disprove: $S \circ R$ is an equivalence relation.

- 15. Let $f(x) = e^{2x}$ and let $g(x) = \ln(x)/2$. Using properties of exponential and logarithmic functions, show that $g \circ f = i_{\mathbb{R}}$. Does this mean that f and g are bijections on \mathbb{R} and that $g = f^{-1}$? If so, why? If not, what can be said about f and g in terms of the properties: injective, surjective, bijective, inverses.
- 16. Prove or disprove that $[(P \Rightarrow Q) \land \sim P] \Rightarrow Q$ is a valid argument.
- 17. Prove or disprove the following statement: If p and q are prime numbers, then $\sqrt{pq} \in \mathbb{Q}$ if and only if p = q.
- 18. Prove or disprove the following statement: There exists an equivalence relation R on a nonempty set A for which there are elements $x, y, z \in A$ such that xRy and yRz and $(z, x) \notin R$.
- 19. Prove or disprove the following statement: The relation R on \mathbb{R} defined by a R b if and only if $a + b \in \mathbf{Z}$ is an equivalence relation.
- 20. Given the usual definition of an ordered pair $(x,y) = \{\{x\}, \{x,y\}\}\$, we define an ordered triple

$$(x, y, z) = (x, y) \cup \{\{x, y, z\}\}.$$

Explain why each of the following is either true or false.

- a. $(1,2) \in (1,2,3)$
- b. $(1,2) \subset (1,2,3)$
- 21. Consider the relation $R = \{(a, b), (b, c), (c, b)\}$ on the set $A = \{a, b, c\}$.
 - a. Find the smallest transitive relation that contains R.
 - b. Disprove the proposition: There exists a partial order that contains R.
- 22. Prove the following. Let x be any irrational real number and let r be any rational number. Then rx is irrational.
- 23. Prove the proposition: Let A be a set and let $\{A_i\}_{i\in\mathbb{N}}$ be a collection of sets such that for each i, $A_i\subseteq U$ for some set U. Then

$$\left(\bigcup_{i\in\mathbb{N}}A_i\right)^c=\bigcap_{i\in\mathbb{N}}A_i^c.$$

24. Prove that for any integer $n \geq 2$, the product of n real numbers is 0 if and only if at least one of the numbers is 0.